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Abstract A quantitative structure–activity relationship
(QSAR) analysis was performed on a data set of 104
molecules showing N-type calcium channel blocking
activity. Several types of descriptors, including electro-
topological, structural, thermodynamics and ADMET, were
used to derive a quantitative relationship between N-type
calcium channel blocking activity and structural properties.
The genetic algorithm-based genetic function approxima-
tion (GFA) method of variable selection was used to
generate the 2D-QSAR model. The model was established
on a training set of 83 molecules, and validated by a test set
of 21 molecules. The model was developed using five
information-rich descriptors—Atype_C_24, Atype_N_68,
Rotlbonds, S_sssN, and ADME_Solubility—playing an
important role in determining N-type calcium channel
blocking activity. For the best QSAR model (model 4),
the statistics were r2=0.798; q2=0.769; n=83 for the
training set. This model was further validated using the
leave-one-out (LOO) cross-validation approach, Fischer
statistics (F), Y-randomisation test, and predictions based
on the test data set. The resulting descriptors produced by
QSAR model 4 were used to identify physico-chemical
features relevant to N-type calcium channel blocking
activity.
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Introduction

Free intracellular Ca2+ is an essential element for life and is
the most common signal transduction element in cells [1].
An electrochemical gradient exists between extracellular
and intracellular calcium concentrations. Calcium enters the
cytosol either through plasma membrane voltage-gated
calcium channels (VGCCs) or is released from intracellular
pools. Under normal physiological conditions, ion channels
permit the orderly movement of ions across both plasma
and intracellular cell membranes. A number of states, as well
as cell death, also occur under pathological conditions in
which the disorderly movement of ions through these same
channels dominates. The aberrant elevation of intracellular
Ca2+ levels through altered calcium channel function is
related to a variety of serious human pathophysiological
conditions, including cardiovascular diseases, muscle disor-
ders, acute or chronic pain, epilepsy, cerebellar ataxia,
migraine, mood disorders, and certain types of cancer [2].

Based on their electrophysiological nature, channels are
classified into high voltage-activated (HVA) and low
voltage-activated (LVA) channels [3, 4]. Of the HVA
channels, the L-, N-, P-/Q-, and R-types require a higher
depolarisation current for activation. The T-type of LVA
channel requires lower depolarisation current to become
activated. These channels mediate the influx of Ca2+ in
response to membrane depolarisation, and play key roles by
regulating calcium influx to intracellular medium in
response to stimuli [5]. VGCCs differ in function, conduc-
tance, activation/inactivation voltage, and sensitivity to-
wards various drugs and toxins.
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N-type calcium channels are associated with central and
peripheral neurons, being located on pre-synaptic nerve
terminals. These channels regulate the calcium flux sub-
serving depolarisation-evoked release of neurotransmitter
from pre-synaptic endings. At the pre-synaptic nerve
terminal, VGCCs open in response to action potentials to
allow an influx of calcium ions. The influx is a graded
process varying in a linear manner with the frequency of
action potentials. These in turn lead to release of various
neurotransmitters that diffuse across the synaptic cleft to the
postsynaptic membrane and bind to their specific receptors.

It has been suggested that the selective N-type calcium
channel blockers (N-type CCBs) could be used as thera-
peutic agents for the treatment of pain [6]. Blockage of N-
type calcium channels has recently been invoked for
treatment of the chronic pain associated with cancer, AIDS
and neuropathy. The drug morphine is used for the
treatment of chronic pain, but it is associated with serious
side effects that limit its long-term use [7]. Omega-
conotoxin MVIIA, a 25-amino-acid peptide found in the
venom of the piscivorous marine snail (Conus magus), is a
potent and selective N-type CCBs [8]. SNX-111 is a
synthetic version of omega-conotoxin MVIIA (trade name
Prialt®), which has recently demonstrated efficacy in
animal models of traumatic brain injury, focal cerebral
ischaemia, and pain. The United States Food and Drug
Administration (FDA) approved SNX-111 (also named
ziconotide), an intrathecally administered peptide acting as
a novel non-opioid for the treatment of severe chronic pain
[6, 9, 10]. The anti-hypertensive drug cilnidipine is a 1,4-
dihydropyridine-derived long-acting dual CCB, which
inhibits both L-type and N-type calcium channels [11].

The group of Yamamoto et al. have recently documented a
novel series of 1,4-dihydropyridines and cyproheptadines as
potent and selective N-type CCBs [12, 13]. This group also
performed a structure–activity relationship (SAR) study on
the 2-, 5-, and 6-position of 1,4-dihydropyridine derivatives
to identify selective and injectable N-type CCBs with high
aqueous solubility [14]. A structure–activity study of
L-cysteine-based N-type CCBs carried out by Seko et al.
[15] established the selectivity towards this channel over
L-type channels. Lars et al. [16] also reported recently the
synthesis and SAR of novel 2-arylthiazolidinones as selec-
tive N-type CCBs.

In silico techniques have proven their usefulness in
pharmaceutical research for the selection/identification and/
or design/optimisation of new chemical entities, to trans-
form early-stage drug discovery, particularly in terms of
time- and cost-savings. Quantitative structure–activity
relationship (QSAR) is one of the most important areas in
chemometrics, and is a valuable tool that is used exten-
sively in drug design and medicinal chemistry [17–19].
Chemical and biological effects are related closely to

molecular physico-chemical properties, which can be
calculated or predicted from their structure using various
kinds of methods [20]. Once a reliable QSAR model is
established, we can predict the activities of molecules, and
know which structural features play an important role in the
biological process. The advances in QSAR studies have
widened the scope of rational drug design as well as the
search for the mechanisms of drug actions.

Many different methodologies, such as multiple linear
regression (MLR), partial least squares (PLS), heuristic
method (HM), and different types of artificial neural
networks (ANN), can be applied for QSAR development.
Recently, genetic function approximation (GFA) has gained
great popularity in QSAR research. The GFA method,
developed by Rogers and Hopfinger [21], is employed in a
statistical analysis to select the relevant descriptors and to
generate different QSAR models. Sensitivity analysis of
QSAR models is then performed and the best model
developed can be used for predicting test set molecules
that were not included in the training set molecules.
Randomisation tests performed on the model at various
intervals of confidence levels ensure its proper validation.

In silico modelling techniques offer an important
approach towards predicting potential CCBs during the
early stages of drug development [22, 23]. The purpose of
the present work was to determine the biological activity of
different scaffolds of non-peptidyl derivatives acting as N-
type CCBs by creating a robust QSAR model. The
developed model should be able to identify and describe
important physico-chemical features of the molecules that
underpin variations in molecular activity.

Materials and methods

Data set

The data set of 104 molecules used for the 2D-QSAR
analyses was collected from the literature [24–29]. The N-
type calcium channel blocking potency (IC50) values for the
data set molecules vary from 0.04 to 120 μM (a factor of
about 12,000), and were measured under the same
experimental conditions using a fluorescence-based Ca2+

flux assay in IMR32 human neuroblastoma cells [24–29].
The structures and N-type CCB activity (IC50) data of these
104 molecules are presented in Tables 1 and 2.

The IC50 values in the micromolar (µM) range were
converted to the molar (M) range and then to its logarithmic
scale (pIC50, M), to reduce the skewness of the data set,
which was then used for subsequent QSAR analysis (Eq. 1)
as the response variable.

pIC50 ¼ � log IC50 ð1Þ
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Table 1 Structure, and actual and predicted activity of N-type calcium channel blockers (CCBs)

pIC50Molecule
number

R Scaffold aIC50(µM)
Actual Predicted

Residual

1 A 0.68 6.168 6.326 -0.158 

2 A 0.36 6.444 6.300 0.144 

3 A 1.60 5.796 5.998 -0.202 

4 A 3.60 5.444 5.840 -0.396 

5a

  

A 1.70 5.770 6.427 -0.657 

6a A 1.90 5.721 6.593 -0.872 

7 A 0.56 6.252 6.539 -0.287 

8a

Cl

N

MeO

HO

N

NO

Cl

N

O

A 1.00 6.000 6.534 -0.534 

9 
Cl

A 0.23 6.638 6.528 0.110 

10 A 0.28 6.553 6.399 0.159 

11 A 0.50 6.301 6.304 0.004 

12 A 1.00 6.000 6.184 -0.184 

13a -NH2 B 3.80 5.420 5.510 -0.091 

14 -NHMe B 2.30 5.638 5.677 -0.039 

15 -N-(Me)2 B 2.30 5.638 5.503 0.135

16 B 1.40 5.854 5.836 0.018 

17 B 6.40 5.194 5.461 -0.267 
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It is essential to assess the predictive power of QSAR
models by using a test set of molecules according to the
following criteria: (1) the biological activity values of the
test set should span the training set several times, but
should not exceed the training set by more than 10%; (2)
the biological assay methods for both the training set and
test set should be the same or comparable; (3) the test set
should represent a balanced number of both active and
inactive molecules for uniform sampling of the data set.
The remaining molecules are taken as the training set for
the purpose of QSAR model building.

Molecular modelling

The molecules under study were built using the SYBYL7.1
[30] molecular modelling package installed on a Silicon
Graphics Fuel Work station running IRIX 6.5. Since no

crystal structure of an N-type calcium channel in complex
with any molecule is available, the basic skeleton and
conformation of the most active molecule, 53, having an
IC50 value of 0.04µm, was selected, to which Gasteiger-
Hückel partial atomic charges [31] were applied and energy
minimised by Powell's [32] method using Tripos force field
[33] with 0.001 kcal mol−1 energy gradient convergence
criterion. The remaining molecules were built by making
the required substitution on template molecule 53 to which
charges were applied and energy minimised as stated
previously. These molecules were then used to construct
the 2D-QSAR model.

Descriptor calculation and selection

Descriptors were calculated using the Cerius2 software
package [34] which includes: electronic descriptors,

18 B 2.80 5.553 5.822 -0.269 

19 B 1.50 5.824 6.058 -0.234 

20 B 0.28 6.553 6.130 0.423 

21 B 0.38 6.420 6.029 0.391 

22a B 0.32 6.495 6.201 0.294 

23 B 0.40 6.398 6.274 0.124 

24a B 0.20 6.699 6.194 0.505 

25 B 0.70 6.155 6.326 -0.171 

26 B 2.20 5.658 5.642 0.016 

27 B 4.40 5.357 5.807 -0.450 

28 B 3.10 5.509 5.543 -0.034 

N

N

N

N

N

N

N

N

N

N

NO

O

OH

EtO

Table 1 (continued)
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Table 2 Structure, and actual and predicted activity of N-type CCBs

pIC50 (M)Molecule 
number 

R X Scaffold aIC50 

(µM) Actual Predicted
Residual

29 C 0.67 6.174 5.979 0.196 

30 H 

H N2

O

CH

HO

Br

F

MeO2S

O

O

O

O

O

O

O

O

O

O

O

O

O

C 4.70 5.328 5.369 -0.041 

31 C 1.60 5.796 6.067 -0.271 

32 C 0.60 6.222 6.154 0.068 

33 C 3.00 5.523 5.370 0.153 

34 C 0.30 6.523 6.342 0.181 

35 C 0.50 6.301 6.530 -0.229 

36 C 0.72 6.143 6.195 -0.052 

37 C 0.70 6.155 5.959 0.196 

38a C 0.83 6.081 6.201 -0.120 

39 C 0.48 6.319 6.403 -0.084 

40 C 1.80 5.745 5.964 -0.219 

41 C 0.38 6.420 6.642 -0.222 
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42 C 0.33 6.481 6.355 0.126 

43a C 0.58 6.237 5.720 0.517 

44a C 3.90 5.409 5.742 -0.333 

45 C 3.80 5.420 5.359 0.061 

46a C 1.60 5.796 5.779 0.017 

47 C 4.80 5.319 5.351 -0.032 

48 C 0.90 6.046 6.259 -0.213 

49 C 1.30 5.886 5.721 0.165 

50 C 2.90 5.538 5.608 -0.070 

51 F C 3.90 5.409 5.267 0.142 

52 H C 7.80 5.108 5.229 -0.121 

53a D 0.04 7.398 6.767 0.631 

54 D 0.09 7.046 6.728 0.318 

55 D 0.50 6.301 6.594 -0.293 

56 D 0.27 6.569 6.467 0.102 

N

N

N

O

O

O

O

O

O

O

O

O

N
H

H
N

N

N N Bn

N Bn

HN

HN

Table 2 (continued)
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57 D 0.31 6.509 6.384 0.125 

58 D 0.44 6.357 6.084 0.237 

59 D 0.50 6.301 6.326 -0.025 

60 D 0.32 6.495 6.395 0.100 

61 D 0.42 6.377 6.367 0.010 

62 D 0.31 6.509 6.259 0.250 

63 D 1.00 6.000 6.098 -0.098 

64a D 1.20 5.921 5.765 0.156 

65 D 0.32 6.495 6.201 0.294 

66 D 0.66 6.180 6.274 -0.094 

67 D 0.59 6.229 6.290 -0.061 

68a D 0.88 6.056 6.192 -0.136 

69 D 1.10 5.959 5.997 -0.038 

70 D 1.20 5.921 5.649 0.273 

71a D 0.20 6.699 6.194 0.505 

N
H

N
H

N
H

N
H

H
N

N

N

N

N N Bn

N

N

N

N

N N

N

Bn

Bn

N
H

H

N

N

N N

N

H
N

Bn

N

Table 2 (continued)
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72 D 0.38 6.420 6.265 0.155 

73a D 0.76 6.119 6.264 -0.145 

74 D 1.30 5.886 6.162 -0.276 

75 D 0.88 6.056 5.981 0.075 

76 D 5.60 5.252 5.638 -0.386 

77 Me D 2.80 5.553 5.822 -0.269 

78 Me D 1.90 5.721 5.584 -0.137 

79 Me D 1.20 5.921 5.607 0.236 

80 Me D 2.60 5.585 5.607 -0.022 

81a Me D 4.10 5.387 5.347 0.040 

82 Me D 13.00 4.886 4.968 0.082 

83 b E 1.10 5.959 6.265 -0.306 

84 b E 0.29 6.537 6.627 -0.090 

85 b E 0.18 6.745 6.603 0.141 

86 
H
N

OH

b 
E 1.80 5.745 5.937 -0.192 

N

N N Bn

NN
H

N
N

NN

H

N

N

N N

H

Bn

Bn

N

N
N

NN

H

N
NH

N
H

N
H

H

N Bn

Table 2 (continued)
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Table 2 (continued)

87a b E 120.00 3.921 5.887 -1.966 

88a a E 0.67 6.174 6.876 -0.702 

89 H

H
N N

NH

a E 1.00 6.000 5.946 0.053

90 b E 0.19 6.721 6.723 -0.002 

91 OH b E 1.10 5.959 5.865 0.094 

92 NH F 0.32 6.495 6.201 0.294 

93 NH F 0.37 6.432 6.201 0.231 

94 NH F 0.83 6.081 6.018 0.062 

95 NH F 1.60 5.796 5.478 0.317 

96 O F 1.00 6.000 6.030 -0.030 

97a O F 1.50 5.824 5.974 -0.150 

98 O F 0.32 6.495 6.160 0.334 

99 O F 1.10 5.959 6.142 -0.183 

100 O F 0.78 6.108 6.112 -0.004 

O

N

N

R1

R1

N

R1

N

R1

N

R1

N

R1

N

R1

N

R1

NR1
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topological descriptors, information content descriptors,
spatial (shadow indices) descriptors, structural descrip-
tors, thermodynamics descriptors, and ADMET descrip-
tors. Before commencing with the development of the
QSAR model, the correlation matrix of about 250
descriptors was calculated and highly correlated descrip-
tors, with correlation values above 0.7, were removed.
Auto scaling (or unit scale variance) of descriptors was
carried out to avoid any bias due to strongly diverging
descriptor values. Scaling is also referred to as stand-
ardising or normalising descriptors to ensure that they
have equal weight (in terms of magnitude) in subsequent
analysis [35, 36]. This is a very sensitive procedure
because, in the descriptor pool, for most cases we do not
know the underlying relationship between the descriptor
and the activity and therefore cannot foresee the influence
of this scaling process. Furthermore, descriptors with
constant values as well as those with poor correlation to
the biological property were discarded; some descriptors
having zero value were also discarded. Finally, three class
of descriptors: electrotopological, thermodynamic and
structural, were considered for statistical fitting using
the GFA method (Table 3).

Regression analysis

GFA is a genetics-based method of variable selection that
combines Holland’s genetic algorithm (GA) with Fried-
man’s multivariate adaptive regression splines (MARS)
[37]. It works in the following way: first of all a particular
number of equations (set at 100 by default in Cerius2

software) is generated randomly, then pairs of ‘‘parent’’
equations are chosen randomly from this set of 100
equations and ‘‘crossover’’ operations are performed at
random. After some preliminary observations on initial
runs, the number of GFA crossovers was set at 5,000 for the
present study in order to obtain reasonable convergence.
The goodness-of-fit of each progeny equation is then
assessed by Friedman’s lack of fit (LOF) score, assigned
by GFA, which resists over fitting and estimates appropriate
number of variables in the equation, and is given by the
following formula:

LOF ¼ LSE= 1� cþ dpð Þ=mf g2 ð2Þ
Where LSE is the least-squares error, c is the number of
basis functions in the model, d is the smoothing parameter,
p is the number of descriptors, and m is the number of

Table 2 (continued)

101a O F 1.00 6.000 5.414 0.585 

102 O F 0.49 6.310 6.392 -0.082 

103a NH F 0.30 6.523 6.676 -0.153 

104 O F 0.40 6.398 6.416 -0.018 

N

N
R1

N
R1

N

H

H

R1

N
R1

Where, R1= A, B, C, D, E, F and a, b are scaffold from Fig. 1

a Indicate molecule taken in the test set
b Experimental inhibitory activity of N-type CCBs is from Ref [24–29] and is converted to pIC50 using Eq. 1
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observations in the training set. The smoothing parameter,
which controls the scoring bias between equations of
different sizes, was set at a default value of 1.0 and the new
term was added with a probability of 50%. Only the linear
equation terms were used for model building. The best
equation out of the 100 equations was taken based on
statistical parameters such as regression coefficient, adjusted
regression coefficient, regression coefficient cross validation
and F-test values.

QSAR model validation

The QSAR model developed was evaluated rigorously
using Y-randomisation test [38] and test set predictions. Y-
randomisation test confirms whether the model is obtained
by chance correlation, and is a true structure–activity
relationship to validate the adequacy of the training set
molecules. The steps followed in the randomisation test are
(1) repeatedly scrambling the activity data in the training
set molecules, (2) using the randomised data to generate
QSAR equations, and (3) comparing the resulting scores
with the score of the original QSAR equation generated
with non-randomised data. If the activity prediction of the
random model is comparable to that of the original
equation, the set of observations is not sufficient to support
the model. The randomisation test was performed at
different confidence intervals (90%, 95%, 98% and 99%).
More randomisation tests are run for higher confidence
levels. For a 90% confidence level, there are 9 trials run, 19
trials for 95%, 49 trials for 98% and 99 trials for 99%. The
correlation coefficient (r) value of the original model was
much higher than any of the trials using permuted data,
hence showing that the model developed is statistically
significant and robust. The inter-correlation of the descrip-
tors used in the final model was checked and the descriptors
were found to be reasonably orthogonal. The predictive
properties of the developed QSAR model were tested more
rigorously by predicting the N-type channel blocking
potency of 21 test set molecules.

Results and discussion

A 2D-QSAR analysis was performed to explore the
structure–activity relationship of different scaffolds of
non-peptidyl derivatives acting as N-type CCBs. These
channel blockers possess a variety of scaffolds (A, B, C,
D, E, and F), di-substituted with different R and X groups,
as presented in Fig. 1 and Tables 1 and 2. The data set of
104 molecules was divided into a training set of 83
molecules and a test set of 21 molecules taking into
account structural diversity and activity range. The
training set molecules was then used to generate the 2D-
QSAR models, while the test set molecules were selected
for model validation.

A large pool of descriptors are available to build initial
QSAR models but, for a good QSAR model, a minimal set
of information-rich descriptors that can shed light on the
structural features important for the biological activity of
the training set is required. Including too many descriptors
in the model, even if they contain relevant information, can
result in over fitting of the model, with the resultant loss of
ability of the model to generalise unseen molecules.
Selection of descriptors is based on their correlation to
biological activity and capability of producing MLR
models with moderate correlation coefficients. A statisti-
cally meaningful QSAR model was constructed by check-
ing the variation of different statistical parameters against
the number of descriptors.

Initially, we were unable to develop a robust QSAR
model for this data set. The QSAR statistics obtained were
not significant, showing very low squared correlation
coefficient and cross-validated correlation coefficient. We
then adopted an auto-scaling procedure for the descriptors.
This methodology led to a marked improvement in the
QSAR statistics, and the model developed was more robust,
as explained in detail below. Scaling of the descriptors has
been carried out successfully by different research groups
for a variety of QSAR case studies in order to improve their
predictive power [39, 40].

Table 3 Equation of quantitative structure–activity relationship (QSAR) models with increasing number of descriptors

Number of
descriptors/QSAR
model

r2 QSAR equation

2 (Model 1) 0.584 pIC50 ¼ 6:01117� 0:26186 * ″ADME Solubility″þ 0:265085 * ″Kappa� 1″

3 (Model 2) 0.669 pIC50 ¼ 6:02994� 0:201676 * ″Hbondacceptor″� 0:282349 * ″ADME Solubility″þ 0:423022 * ″Rotlbonds″

4 (Model 3) 0.739 pIC50 ¼ 6:00961� 0:332063 * ″ADME Solubility″� 0:20311 * ″Atype N 68″þ 0:549302 * ″Kappa� 1″
�0:208374 * ″CHI� V� 2″

5 (Model 4) 0.798 pIC50 ¼ 6:04274� 0:325494 * ″ADME Solubility″þ 0:118937 * ″Atype C 24″þ 0:369743 * ″Rotlbonds″
�0:266013 * ″Atype N 68″þ 0:125834 * ″S sssN″

6 (Model 5) 0.779 pIC50 ¼ 6:04191þ 0:295619 * ″Rotlbonds″� 0:19678 * ″Jurs� DPSA� 2″� 0:282395 * ″SC� 0″
�0:269756 * ″ADME Solubility″� 0:229987 * ″Atype N 68″þ 0:580605 * ″MR″
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Sensitivity analysis of the 2D-QSAR model

Sensitivity of the QSAR models was assessed mainly
using two statistical parameters: the cross-validated corre-
lation coefficient (q2), and Fischer ratio (F). The correla-
tion coefficient (r2) can be increased easily by the number
of terms in the QSAR equation, so we took q2 as the
limiting factor for controlling the number of descriptors to
be used in the model. In order to assess the sensitivity, five
different QSAR models were created by increasing the
number of descriptors stepwise from two to six. The QSAR
equations along with the number of descriptors are
presented in Table 3. Different statistical parameters used
to validate these QSAR models are shown in Table S1 in
the electronic supplementary material (ESM). The varia-
tion of r2 and q2 values with the number of descriptors is
presented in ESM Fig. S1. The r2 and q2 values increase
until the number of descriptors in the QSAR equation
reached five. When the number of descriptors in the QSAR

equation was six (model 5), there was a decrease in q2

value indicating the model sensitivity, as presented in
Fig. S1 and Table S1. Thus, the number of descriptors was
restricted to five and the QSAR equation obtained for
model 4 is given below.

pIC50 ¼ 6:04274� 0:325494 * ″ADME Solubility″
þ 0:118937 * ″Atype C 24″þ 0:369743 * ″Rotlbonds″
� 0:266013 * ″Atype N 68″þ 0:125834 * ″S sssN″

N ¼ 83; LOF ¼ 0:048; r2 ¼ 0:798; r2adj ¼ 0:785; F� test ¼ 62:27;
LSE ¼ 0:038; r ¼ 0:893; q2 ¼ 0:769

ð3Þ

Where N is the number of molecules in the training set,
LOF is lack of fit score, r2 is the squared correlation
coefficient, r2adj is the square of adjusted correlation
coefficient, F-test is a variance-related statistic that
compares two models differing by one or more variables
to see if the more complex model is more reliable than the
less complex one. The model is assumed to be good if the
F-test is above a threshold value, LSE is least square error,

Fig. 1 Different scaffolds of
N-type calcium channel
blockers (CCBs)
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r is correlation coefficient, and q2 is the square of the
correlation coefficient of the cross-validation.

Figure 2 presents scatter plots of the actual (experimental)
pIC50 values for the training set (blue squares) and test set
molecules (red squares) versus the calculated pIC50 values
predicted by QSAR model 4.

Validation of 2D-QSAR model 4

Cross-validation of the QSAR model 4 by the leave one out
(LOO) procedure showed a statistically significant correla-
tion coefficient of q2=0.776. Furthermore, the random-
isation test, performed for 99 random trials (Table S2)
showed a large difference of about 0.7 in the r values for
non-random and random trials, with the observed deviation
of random values being only 0.08, suggesting that the
selected training set was adequate to support the developed
QSAR model. Also, none of the random r values were
greater than the non-random r values. Furthermore, the
correlation matrix of the descriptors used in developing the
QSAR equation of model 4 is significant (presented in
Table S3).

In the test set prediction, the residual values for 20 of the
21 molecules were found to be within the acceptable range
of 1. A scatter plot of the experimental and predicted pIC50

for the test set molecules is presented in Fig. 2. Overall, the
developed 2D-QSAR model 4 is robust and was found to
be statistically significant.

Importance of molecular descriptors

Five important molecular descriptors appeared in QSAR
model 4: Rotlbonds, Atype_C_24, S_sssN, Atype_N_68,
and ADME_Solubility. Among these, Rotlbonds, Atype_
C_24, and S_sssN descriptors correlated positively with
activity, while ADME_Solubility and Atype_N_68 descrip-
tors correlated negatively with N-type CCB activity.

The type, definition and meaning of these five descrip-
tors are described below along with their importance in
understanding N-type CCB activity.

(1) Rotlbonds is a structural descriptor and indicates
number of rotational bonds in a molecule. The
molecular activity and the number of rotatable bonds
in the studied molecules can be broadly correlated,
and this descriptor showed positive correlation with N-
type CCB activity in QSAR model 4. The ‘Opera’ rule
needs to be addressed on the basis of the number of
rotatable bonds, which in turn controls the structural
flexibility of the molecule required for attaining
bioactive conformation for drug-like molecules [41].

(2) Atype_C_24 is one of the atom type AlogP descriptors
that appeared in QSAR model 4. In this descriptor, the
C atom in the molecule is linked in R- -CR- -R
manner, where R represents any group linked through
carbon and ‘‘- -’’ represents aromatic bonds as in
benzene or delocalised bonds like the N–O bond of a
nitro group [42, 43]. Atype descriptors are thermody-
namic descriptors defining the presence of that type of
atom in the molecule. Various atom type AlogP
descriptors can be used to calculate the logP of
molecules. In this strategy, halogens and hydrogen
are classified by the hybridisation and oxidation state
of the carbon to which they are bonded; carbon atoms
are classified by their hybridisation state and the
chemical nature of their neighbouring atoms. In other
words, the aromaticity associated with the C atom as
part of the aromatic ring is favourable for CCB
activity. Thus the positive slope of the Atype_C_24
descriptor in QSAR model 4 revealed that N-type
CCB activity increases with an increase in hydropho-
bicity associated with this carbon.

(3) S_sssN is a thermodynamic descriptor and is defined
as the summation of the electrotopological indices for
all the N atoms present in a molecule that is connected

Outlier molecule 87

a

b

Fig. 2 Scatter plot of actual vs predicted activity of the training set
(blue squares) and test set (red squares) molecules of quantitative
structure–activity relationship (QSAR) model 4, either including (a) or
excluding (b) molecule 87
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by three single bonds except hydrogen. Zhihua et al.
[44] showed that electrotopological descriptors have
both excellent structural selectivity and good activity
estimation for peptide analogues. The numerical
values of electrotopological descriptors computed for
each atom in a molecule encode information about
both the topological environment of that atom and
electronic interactions due to all other atoms in the
molecule. The topological relationship is based on the
graph distance to each atom. The electronic aspect is
based on the intrinsic state and perturbation due to the
intrinsic state differences between atoms in the
molecule [44, 45]. The developed QSAR model 4
revealed a positive correlation with the descriptor
S_sssN, suggesting that the nature of the electronic
environment in this molecule is necessary for potent
N-type CCB activity.

The other two descriptors Atype_N_68 and ADME_Solubility
selected by QSAR model 4 exhibited a negative correlation
with the N-type CCB activity, as discussed in detail below.

(4) Atype_N_68 descriptor is of atom-type and is defined
as N present in an Al3N context in the molecule. Al
represents aliphatic groups and the N atom linked with
the three aliphatic groups in the molecule (tertiary
nature). The negative slope of this descriptor in QSAR
model 4 revealed that N-type CCB activity decreases
with an increase in hydrophobicity associated with this
nitrogen.

(5) ADME_Solubility belongs to the ADME set of
descriptors, and is defined as the base 10 logarithm
of the molar solubility of each molecule in water,
predicted by linear regression methodology [46]. The
presence of this descriptor in QSAR model 4 was
correlated with a negative contribution towards N-type
CCB activity.

All five above-mentioned descriptors provided insight into
the physico-chemical requirements necessary for designing
potent N-type CCBs.

The N-type CCB dataset has six different structurally
diverse scaffolds, as presented in Fig. 1. Scaffold A has 12
molecules (1–12), with activity ranging from 0.23 to 3.6 μM.
Scaffold B has 16 molecules (13–28), with activity ranging
from 0.20 to 6.4 μM. Table 1 shows the structure and
activity of these two different scaffold-containing molecules.
Other series of molecules from the dataset include scaffold
C, with 24 molecules (29–52), and activity ranging from
0.30 to 7.8 μM; scaffold D with 30 molecules (53–82), and
activity ranging from 0.04 to 13.0 μM; scaffold E with 9
molecules (83–91), and activity ranging from 0.18 to
120.0 μM; and scaffold F with 13 molecules (92–104), and
activity ranging from 0.30 to 1.60 μM, respectively. The

structure and activity of these latter four different scaffold-
containing molecules is presented in Table 2.

The most potent molecules (53 and 54) are present in the
scaffold D group. The contribution of the electronic
environment of the descriptor S_sssN in these two
molecules has similar chemical features, as reflected in its
R- and X- substitutions. The presence of this descriptor is
very important for the potent activity of these molecules,
which was further confirmed by the positive slope in QSAR
model 4. Further, the functional groups attached at the R
region in molecules 53 and 54 have aromatic features, and
do not completely follow the nature of the chemical
environment of the Atype_N_68 descriptor. In other words,
molecule 53 has aliphatic amine groups, which are
secondary in nature and do not strictly follow the Al3N
manner. In support of this observation, this descriptor also
showed a negative slope in QSAR model 4.

The scaffold D group also has the least potent molecule
(82) with an IC50 value of 13 μM, which is 1,000-fold less
potent than molecule 53. The R-Me group substitution in
molecule 82 is strictly in accordance with the chemical
nature of the Atype_N_68 descriptor. This molecule also
has two other substitutions with the same chemical features
in the X-region, favouring lower activity (Table 2). The
presence of an Atype_N_68 descriptor type chemical
feature might be the key point determining the low activity
of molecule 82.

We also analysed the contribution of different descriptor
values in QSAR model 4 for Atype_N_68 and S_sssN
descriptors, with respect to the most potent molecules 53
and 54 as well as that of the least potent molecule 82. These
values were used mainly for the development of QSAR
model 4. For the most potent molecules 53 and 54, the
Atype_N_68 descriptor has a descriptor value of 0.079. For
the least potent molecule 82, this value is 1.61. The
negative correlation of the Atype_N_68 descriptor in
building QSAR model 4 revealed that, for the most potent
molecules, its contribution (or descriptor value) should be
less, and for the least potent molecules its contribution
should be more. Thus, the high descriptor value of the
Atype_N_68 descriptor for molecule 82 suggests its
contribution in making the molecule less active, viz., this
descriptor is negatively correlated with QSAR model 4. On
the other hand, the most potent molecules (53 and 54) have
lower descriptor values as mentioned above, suggesting that
the contribution of Atype_N_68 descriptor is less, which in
turn favour greater molecular activity. The S_sssN descrip-
tor has descriptor values 0.972 and 0.770 for the most
potent molecules 53 and 54. For the least potent molecule
82, this value is 1.15, which is less than that observed for
the Atype_N_68 descriptor as mentioned above. This
analysis shows clearly that the positive (and negative)
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contribution of the value of the descriptors S_sssN (and
Atype_N_68) in generating QSAR model 4 is in agreement
with each molecule’s N-type CCB activity. Thus, the above
analysis clearly demonstrates that the influence of
Atype_N_68 and S_sssN descriptors is very important in
distinguishing between potent and less potent N-type
CCBs.

The main outlier of QSAR model 4 is molecule 87,
which fits neither in the training set nor the test set. This
molecule belongs to the scaffold E group of the dataset.
Scaffold E group molecules (83–91) have medium-range
potency (0.18–1.80 µM), with the exception of molecule
87, with a potency of 120µM. Most of these medium-range
potency molecules have aliphatic substitutions at the R- and
X- regions, which are thus less electronegative in nature.
Molecule 87, in which the nitrogen of the imidazole ring
exhibits double bond connectivity, is more polar than other
molecules in this series. This chemical feature is present
only in molecule 87 of this E series, and is not supported by
the descriptor S_sssN. Further, the S_sssN descriptor
correlated positively with the activity as shown by the
QSAR equation of model 4. All the above observations
clearly support that conclusion that molecule 87 is inactive.
Hence, the influence of these descriptors in building QSAR
model 4 will be essential to the prediction of the activity of
diverse classes of N-type CCBs.

Conclusions

Using 104 N-type CCBs, a robust QSAR model was
developed using GFA methodology. The best QSAR model
(4) was created using five important molecular descriptors:
Atype_C_24, Rotlbonds, and S_sssN descriptors have
positive correlation, whereas ADME_Solubility and
Atype_N_68 descriptors have negative correlation with N-
type CCB activity.

QSAR model 4 was validated by cross-validation,
randomisation, and test set prediction techniques. Model 4
is statistically and chemically sound and explains more than
95% of the variance in the experimental activity with good
predictive power, as evidenced from the predicted activity
of the test set molecules. The structural and electrotopo-
logical index descriptors were found to play a major role in
determining N-type CCB activity. The rotational bond and
atom-type descriptors highlight the importance of spatial
aspects in designing these CCBs. The influence of electro-
topological descriptor S_sssN was promising, and showed
that the tertiary nitrogen with its linear aliphatic amine
contributions must be taken into account when designing
new inhibitors against this channel. Analysis of atom-wise
contributions to hydrophobicity will probably help to

appropriately take into account those atom types that are
essential for determining CCB activity.

2D-QSAR modelling can help in determining which
parts of a molecule can be modified to increase affinity and
efficacy, providing valuable guidance in the drug discovery
process. These models are useful because they rationalise a
large number of experimental observations, and allow
saving of both time and money in the drug design process,
and represent a step forward in the in silico identification of
potent N-type CCBs.
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